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Abstract 

Probabilistic seismic hazard analysis (PSHA) combines the probabilities of all earthquake 

scenarios with different magnitudes and distances with predictions of the resulting ground 

motion intensity, in order to compute seismic hazard at a site.  PSHA also incorporates 

uncertainties in those ground motion predictions, by considering multiple ground motion 

prediction (“attenuation”) models (GMPMs).  Current ground motion selection uses the 

information from earthquake scenarios without considering multiple GMPMs.  This paper 

describes ways to incorporate multiple GMPMs, using refinements to disaggregation and 

Conditional Mean Spectrum (CMS).   

CMS, a new target spectrum proposed for ground motion selection, utilizes the 

correlation of spectral acceleration (Sa) across periods to compute the “expected” or mean 

spectrum given a target Sa at a single period of interest; we use a simplified site example to 

illustrate CMS computation incorporating multiple GMPMs.  Disaggregation of GMPMs plays 

an important role in CMS computation, in a similar way as assigned weights of GMPMs do in 

PSHA computation.  Just as the disaggregation of magnitude and distance identifies the relative 

contribution of each earthquake scenario to exceedance of a given Sa level, the disaggregation of 

GMPMs tells us the probability that the exceedance of that Sa level was predicted by a specific 

GMPM.  We can further extend disaggregation to other ground motion parameters, such as 

earthquake fault types, to more accurately represent the parameters that contribute most to Sa 

values of engineering interest. 
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1 Introduction 

Performance of structures during and after earthquakes is critical to public safety and 

societal functionality.  Performance-based earthquake engineering aims to improve seismic 

design and analysis of structures through risk analysis.  In performance-based earthquake 

engineering, we input ground motion into a structural model to predict structural response such 

as maximum interstory drift ratio.  Subsequently, we use structural response to categorize 

damage states and estimate losses in terms of dollars, down time and fatalities, in order to 

quantify performance of structures under earthquakes. 

To mitigate earthquake risk, we must first identify ground motion hazard, through 

probabilistic seismic hazard analysis (PSHA).  PSHA combines the probabilities of all 

earthquake scenarios with different magnitudes and distances in order to compute seismic hazard 

at a site.  PSHA also incorporates uncertainties in ground motion prediction, by considering 

multiple ground motion prediction models (GMPMs), formerly known as attenuation equations 

(e.g., Abrahamson and Silva 1997).  GMPMs have inputs such as magnitude and distance, and 

outputs in terms of logarithmic mean and standard deviation of spectral acceleration (Sa).  When 

multiple GMPMs are present, we typically use a logic tree to assign a weight to each GMPM.  

PSHA then estimates seismic hazard at a site incorporating uncertainties from earthquake 

scenario and GMPMs. 

Ground motion selection is a key step in defining the seismic load input to structural 

analysis.  Current ground motion selection uses the information from earthquake scenarios 

without considering multiple GMPMs.  While PSHA computes the total seismic hazard using 

total probability, its reverse process--PSHA disaggregation--computes the relative contribution 

of earthquake parameters to the total hazard using conditional probability.  Current ground 

motion selection utilizes disaggregation results of magnitude and distance to identify causal 

events for a given Sa value corresponding to a return period.  In this paper we consider ways to 

incorporate multiple GMPMs into ground motion selection techniques using refinements to 

PSHA disaggregation. 

Ground motion selection often involves specification of a target spectrum.  Baker (2005) 

proposed a target spectrum termed the conditional mean spectrum (CMS), which shows several 

improvements over the commonly used uniform hazard spectrum (UHS).  For the UHS, the 

probability of Sa exceedance is the same across all periods.  But observed spectra rarely look like 



5 
 

a UHS, for several reasons. Different frequency regions of the UHS are often associated with 

different earthquake events.  The UHS is also typically associated with above-average Sa values 

for the causal earthquake event, and due to imperfect correlation of Sa values it is unlikely that 

this above-average condition will occur at all periods simultaneously. Thus, no single ground 

motion is likely to produce a response spectrum as high as that of the UHS.  To account for the 

variation of causal earthquake events and Sa values for a given causal event, the CMS makes use 

of the correlation of Sa across different periods.  CMS answers the question, “Given a Sa at the 

first-mode period of a structure, what will be the expected Sa at other periods?” The procedure 

for performing this calculation will be described later.  The CMS calculations utilizes the 

magnitude, distance and “epsilon” values obtained from disaggregation, but it also requires the 

user to choose a GMPM for the calculation. With additional insights into the relative 

contribution of GMPMs from this new disaggregation refinement, we can more effectively 

choose appropriate GMPMs for CMS calculations, and thus overcome a practical challenge to 

implementing the CMS in performance based earthquake engineering.  

2 Disaggregation Using Multiple Ground Motion Prediction Models 

Computation of the Conditional Mean Spectrum requires disaggregation to identify the 

causal parameters.  Since multiple Ground Motion Prediction Models are typically used in 

practice for Probabilistic Seismic Hazard Analysis, PSHA disaggregation can be extended to 

include multiple GMPMs.  To demonstrate, we use the models and weights specified by the 

United States Geological Survey (USGS) for the Western US non-extensional tectonic areas 

(Frankel et al. 2002): Abrahamson and Silva (1997), Boore et al.(1997), Campbell (1997)1, and 

Sadigh et al.(1997)2, with equal weights.    

2.1 Parameters 

Different GMPMs require different input parameters.  This variation presents challenges 

for the disaggregation process.  The parameters used in each model are shown in Table 1.  The 

                                                 
1 Campbell (1997) was used in the proposed method instead of Campbell and Bozorgnia (2003) in the USGS 
method because the former was previously programmed and thus readily available.  We believe the differences 
between the two models are minor, and will compare and verify these differences in the future. 
2  We have modified the Sadigh et al. model to correct an error in the prediction equation in Table 2 in the original 
publication. The Abrahamson and Silva model has also been modified to correct some errors in the original 
publication.  The ground motion prediction model scripts are available at 
http://www.stanford.edu/~bakerjw/attenuation.html.  
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magnitude definition is identical for all models, but the models differ in their distance 

definitions, as well as how they group and classify site conditions and rupture mechanisms. 

When different definitions or groupings are used for the same ground motion parameter, we need 

to convert one definition to another or re-group the inputs, in order to facilitate consistent 

disaggregation. For instance, Abrahamson and Silva (1997) and Sadigh et al. (1997) used the 

rupture distance, rrup, the closest distance from the recording site to the ruptured area, while 

Boore et al. (1997) used the Joyner Boore distance, rjb, the shortest horizontal distance from the 

recording site to the vertical projection of the rupture.  For cases that involve different definitions 

of distance, Scherbaum et al. (2004) proposed conversion approaches among the different kinds 

of distance.  
Table 1: Parameters used for four Ground Motion Prediction Models 

  Abrahamson and Silva Boore et al. Campbell Sadigh et al. 
Magnitude Mw Mw Mw Mw 
Distance rrup rjb rseis rrup 
Fault Type RV, RO, others SS, RV, others SS, RV (TR, RO, TO) SS, RV(TR) 
Hanging Wall Yes No No No 
Site Condition Soil, rock Vs30 Soil, soft rock, hard rock Deep soil, rock 

Mw = moment magnitude 

rrup = the shortest distance from the recording site to the ruptured area 

rjb = the shortest horizontal distance from the recording site to the vertical projection of the rupture 

rseis = the shortest distance from the recording site to the seismogenic portion of the ruptured area 

SS = strike-slip, RV = reverse, TR = thrust, RO = reverse oblique, TO = thrust oblique 

2.2 Probabilistic Seismic Hazard Analysis 

PSHA integrates over all possible earthquake sources with various annual rate of 

occurrence, νi and aleatory uncertainties such as magnitudes ( M ), distances ( R ), and epsilons   

(ε ) in order to compute the total annual rate of exceedance of a spectral acceleration of interest, 

ν (Sa > y).  PSHA is usually done with multiple GMPMs, an epistemic source of uncertainties.  

We explicitly consider the epistemic uncertainty in PSHA by incorporating weights of GMPMs, 

P(GMPMj) into Equation (1), to compute the total hazard rate (Kramer 1996). 
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2.3 Disaggregation of Magnitude. Distance, and Epsilon  

Now we have computed the total hazard rate in Equation (1), we can ask “what will be 

the distribution of magnitudes that cause Sa > y?”   Disaggregation of magnitude answers this 

question.   Since all four models use moment magnitudes as inputs, the disaggregation of 

magnitudes will be straightforward and can be determined as follows. 
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The conditional distribution of magnitude given Sa, ),(| ymf ySaM >  is available on the 

USGS website, as a disaggregation plot.  Since magnitudes are usually discretized into bins, the 

corresponding conditional distribution is expressed in terms of percentage contribution to Sa > y,

)|( ySamMP >= , instead of ),(| ymf ySaM > . 

The resulting disaggregated mean magnitude, ySaM >|
_

, which is also provided by the 

USGS, can be calculated easily using standard computation for expected values, as follows: 

∑ >==>=> )|()|(|
_

ySamMmPySaMEySaM  (3)

This disaggregated mean value of magnitude serves as an input to the computation of the 

CMS. 

The disaggregation of distance is similar in theory to the disaggregation of magnitude, 

except for the complication of differing definitions of distance in different GMPMs as discussed 

in 2.1.  The disaggregated distribution of distance, ),(| yrf ySaR >  can be found as follows, similar 

to Equation (2):   

∑∑ ∫∫ >
>

= Ε>
j i

jjRMiySaR GMPMPdmdGMPMrmySaPrmf
ySa

yrf )(),,,|(),,(
)(

1),( ,,| εεεν
ν

 (4)

The disaggregation of epsilon, ε, is an important step for CMS computation, since CMS 

utilizes the correlation between ε’s across periods.  Although it is similar in concept to the 

disaggregation of magnitude and distance, we should pay additional attention to the difference 

between the approach of McGuire (1995) and that of Bazzurro and Cornell (1999).  McGuire’s 

disaggregation is conditioned on Sa = y, so there is a single value of epsilon, ε∗ that corresponds 
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to each Sa level (for a given magnitude and distance).  On the other hand, Bazzurro and 

Cornell’s disaggregation is conditioned on Sa > y, the epsilon value, ε∗ that corresponds to Sa = 

y  is the lower bound value that marks the beginning of exceedance (Figure 1).   For each event 

(M = m, R = r), to get an equivalent mean value of epsilon that corresponds to Sa > y, we can 

find a centroidal value of epsilon, ε  integrated from the lower bound value, ε∗  to infinity with 

respect to epsilon (Equations (5) and (6)).  Note that the tail of the ε distribution does not 

contribute significantly to this mean, so we can truncate the distribution at ε = 4 to 6, instead of 

infinity (Strasser et al. 2008).   

),,(|)(),,(| rRmMySadxxxfrRmMySa ==>===> ∫
∞

∞−
Ε

−

ε  (5) 

where fΕ(x) is the conditional distribution of ε given Sa > y and M = m, R = r, as shown in 

Figure 1 and defined by the following equation 
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 The disaggregated distribution of epsilon, ),(| yf ySa ε>Ε  can be found as follows, similar to 

Equations (2) and (4):   
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>

= Ε>Ε
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2.4 Disaggregation of Ground Motion Prediction Models 

The disaggregation of GMPMs is similar in concept to the disaggregation of magnitude, 

distance, and epsilon; it tells us the probability that the exceedance of a given Sa level was 

predicted by a specific GMPM, )|( ySaGMPMP j > .   While equal weights are often assigned to 

each GMPM at the beginning of analysis, it turns out that the contribution of the GMPMs to 

prediction of a given Sa > y is often unequal.  This discrepancy will make a difference for CMS 

computation, since new weights of GMPMs will offer additional insights into the relative 

contribution of GMPMs.   

The disaggregated probability of GMPM, )|( ySaGMPMP j >  can be found as follows, 

similar to Equations (2), (4), and (7):   
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2.5 Disaggregation of Other Parameters 

Similarly, the total hazard, )( ySa >ν  can be computed if other parameters, expressed as

θ , are considered: 
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Disaggregation can be extended to other parameters, ),(| yf ySa θ>Θ  in a similar fashion to 

Equations (2), (4), (7), and (8): 
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 (10)

For instance,θ  could represent fault types.  The current USGS disaggregation method 

assumes a random fault type.  An alternative to the USGS method might use disaggregation 

based on available fault types in each ground motion prediction model.  Fault types can be 

treated as discrete random variables, sometimes with several lumped into one group.  The 

relative contribution of each fault type can be represented through histograms similar to those for 

discretized magnitude and distance.  We could apply this approach to other parameters, such as 

depth to top of rupture, in order to identify their relative contribution to exceedance of a given Sa 

value. 

3 Conditional Mean Spectrum Computation  

 The Pacific Earthquake Engineering Research (PEER) Center’s Ground Motion 

Selection and Modification Program (http://peer.berkeley.edu/gmsm/) has studied different 

ground motion selection methods.  The CMS method (Baker 2005) is promising, because it aims 

to match a realistic spectral shape, produces no bias in structural response when using scaled 
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ground motions, and enlarges the pool of potential ground motions that can be selected and 

scaled for nonlinear dynamic analysis. 

The CMS makes use of the observed multi-variate normal distribution of the logarithmic 

spectral accelerations ( Saln ) at different periods (T ). The mean of Saln  at all periods T , is 

conditioned on *)(ln)(ln 11 TSaTSa = , where *)( 1TSa  is the target spectral acceleration, and 1T  

is the primary period of interest. We use GMPMs to predict the logarithmic mean and standard 

deviation of Sa at a range of periods that pivot around the disaggregated means 
___

,, εRM given

*)(ln)(ln 11 TSaTSa = .  Baker and Jayaram (2008) have provided the required additional piece of 

information, the correlation coefficient ρ of Sa  across periods. 

The logarithmic mean and standard deviation of the CMS can be computed as follows: 

)(),(),,( 1

__

ln)(ln),(ln

__

ln)*(ln)()|ln(ln 111
TTMTRM SaTSaTSaSaTSaTSaTSa εσρμμ +≈=  (11)

2
)(ln),(ln

_

ln*)(ln)(ln|)(ln 111
1),( TSaTSaSaTSaTSaTSa TM ρσσ −≈=  (12)

where 

1*)(ln)(ln|)(ln 11 TSaTSaTSa =μ  = the mean lnSa at period T, conditioned on 1ln ( )*Sa T . 

)*(ln)()|ln(ln 11 TSaTSaTSa =σ  = the standard deviation of lnSa at period T, conditioned on 

1ln ( )*Sa T . 

)(ln),(ln 1 TSaTSaρ  = the correlation coefficient between the logarithmic spectral accelerations 

at periods T and T1 . 
___

,, εRM  = the disaggregated mean magnitude, distance, and epsilon for the given 

*)( 1TSa . 

),(),,,(
_

ln

__

ln TMTRM SaSa σμ  = the mean and standard deviation, respectively, of the 

logarithmic spectral acceleration at period T, computed using a ground motion prediction model. 

While this approach appears to be advantageous in some situations (Baker 2005; Baker 

and Cornell 2006), challenges remain for its implementation in practice.  A primary question is, 

which GMPMs should we use to evaluate the above equations when multiple GMPMs are used 

in a logic tree to perform the associated PSHA?  To address this question, we introduce two 

approaches and apply them to an example site. 
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4 Calculation Procedure and Site Application 

To demonstrate the concepts of PSHA disaggregation and CMS computation using 

multiple GMPMs, we have applied two approaches of CMS computation to an example site as 

follows: 

1. For Approach 1, first we directly apply one GMPM to compute the CMS, based 

on disaggregated mean M/R/ε considering all GMPMs. We could simply stop at this point 

and call the result a target CMS; we will show this intermediate result below and label it 

“Approach 0.” Then we repeat Approach 0 for each GMPM used in the PSHA 

calculation, and average the resulting Conditional Mean Spectra (using equal weights for 

each) to obtain a weighted average CMS. 

2. For Approach 2, first we apply one GMPM to compute the CMS, using the 

disaggregated mean M/R/ε associated with that particular GMPM.  Then we repeat the 

same step for each GMPM used in the PSHA calculation, and average the resulting 

Conditional Mean Spectra (using weights for each obtained using the GMPM 

disaggregation), to compute a weighted average of CMS. 

4.1 Description of Site and Events 

The example site considered is dominated by two earthquake events, as shown in Figure 

2.  We selected this site because it has two events with very different magnitudes and distances, 

which is helpful for illustrating PSHA, PSHA disaggregation, and CMS computation.  Event A, 

with magnitude, M = 6 and distance, R = 10 km from the site, has an annual occurrence rate of ν 

= 0.01; Event B, with magnitude, M = 8 and distance, R = 25 km from the site, has an annual 

occurrence rate of ν = 0.002.  Both events have strike slip mechanisms and no hanging walls.  

The site has soil with shear wave velocity Vs30 = 310 m/s, corresponding to NEHRP Site Class D.  

Assuming a vertical fault that extends all the way to the ground surface (a reasonable assumption 

for shallow crustal earthquakes in coastal California), rupture distance, rrup, is the same as rjb. 

The earthquake events are assumed to rupture the whole of faults A and B, so the closest distance 

to the site for a given earthquake will be a known constant.   

We use four GMPMs to evaluate the annual rates of exceeding a target Sa level for both 

events.  The logic tree that incorporates four GMPMs is shown in Figure 3. According to USGS 

practice, we assign equal weights to each GMPM.  The period of interest is 1 s. The probability 
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of exceeding a target Sa level, given an event with its associated magnitude and distance, is 

computed using each GMPM, and the results are plotted in Figure 4.  According to Figure 4, 

Event A has a lower probability of Sa(1s) > y at all Sa levels than Event B does, but Event A 

occurs more frequently and thus still contributes significantly to the ground motion hazard. 

Utilizing Equation (1), the results from Figure 4, and the fact that each event corresponds 

to a single  magnitude and distance, Equation (13) can be used to compute the mean annual rate 

of Sa > y due to these two events, evaluated using four GMPMs.   

∑∑
= =

>=>
2

1

4

1

)()|(),|()(
i j

iijji EventEventGMPMPGMPMEventySaPySa νν  (13)

The weight of each GMPM is equal to 0.25 in this case, so Equation (13) can be rewritten 

as 

∑∑
= =

>=>
2

1

4

1

)()25.0)(,|()(
i j

iji EventGMPMEventySaPySa νν  (14)

 The ground motion hazard curve obtained from this calculation for this simplified site is 

shown in Figure 5. This calculation is comparable to that used to produce the hazard curves 

available on the USGS website (http://earthquake.usgs.gov/research/hazmaps/), for real sites in 

the United States. Two typical design levels (2% and 10% in 50 years) along with an additional 

illustrative design level (40% in 50 years) are marked in Figure 5.  Using a Poisson model for 

earthquake recurrence, a Sa exceedance probability of 2% in 50 year is equivalent to ν(Sa > y) = 

0.0004 (a return period of 2475 years), and hence a target Sa value, Sa(1s)* of 0.84g. Similarly, 

Sa exceedance probabilities of 10%  and 40% in 50 years are equivalent to return periods of 475 

and 100 years, and have target Sa(1s)* values of 0.43g and 0.10g, respectively.  The following 

plots of disaggregation results and CMS calculations have these three design levels Sa levels 

marked for reference.   

 

4.2 Disaggregation of Events 

The conditional probability that each event caused  Sa > y is given by Equation (15). 

)(
),()|(

ySav
EventySaySaEventP i

i >
>

=>
ν  (15)

where 
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 The probabilities obtained from Equation (15) are plotted in Figure 6. From Figure 6, we 

can see that the smaller but more frequent Event A is most likely to cause exceedance of small 

Sa amplitudes, whereas Event B is most likely to cause exceedance of large Sa amplitudes. This 

is because the annual hazard rate involves two competing factors: annual rate of occurrence for 

an earthquake, and probability of exceeding a Sa level given that earthquake.  Small earthquakes 

(for example, Event A) have a larger annual rate of occurrence than large earthquakes, whereas 

large earthquakes (for example, Event B) have a larger probability of exceeding a Sa level.  At a 

lower Sa level, the hazard is dominated by small frequent earthquakes; at a higher Sa level, the 

hazard is dominated by large but infrequent earthquakes because the small earthquakes very 

rarely generate such large ground motion amplitudes. The results in Figure 6 are typical of PSHA 

analyses for more realistic sites. 

4.3 Disaggregation of Ground Motion Prediction Models 

Following Equation (8), the disaggregation of GMPMs is performed using the following 

equations,  

)(
),(

)|(
ySav

GMPMySa
ySaGMPMP j

j >
>

=>
ν

 (17)

where 

∑ >=>
i

ijijj EventGMPMPEventGMPMySaPGMPMySa )()(),|(),( νν  
(18)

Note the similarity between Equations (16) and (18).  The results of this disaggregation 

calculation are shown in Figure 7. The disaggregated GMPM contributions vary from 0.16 to 

0.31, instead of having an equal weight of 0.25.  The weights are still not too far from 0.25. 

GMPM disaggregation is useful for computation of CMS, as the disaggregated probabilities of 

GMPMs offer additional insights into which GMPM contributes most to the prediction of Sa 

values of interest.   

4.4 Disaggregation of Magnitude, Distance, and Epsilon  

Since only one magnitude is associated with each event, the disaggregated mean 

magnitude can be found easily by determining the sum of the products of the magnitudes given 

an event and the disaggregated contribution of the event, as follows:  
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where M  is used to denote the mean value of M . Note that in this example iEventM |  is a 

deterministic relationship, since there is only a single magnitude associated with each event.  

This equation is equivalent to Equation (5). 

The disaggregated mean magnitude can be found using a similar method separately, for 

each GMPM, as shown in Equation (20). The results are shown in Figure 8.  In this figure, the 

thin lines indicate the mean magnitude, given Sa > y and given that the associated GMPM was 

the model that predicted Sa > y, ySaGMPMM j >,|
_

.  The heavy line provides the a weighted 

average (composite) of ySaGMPMM j >,|
_

over all GMPMs. The variation of disaggregated 

mean magnitudes, is greater at higher Sa values because that is where the GMPMs differ more 

significantly due to lack of data to constrain the predictions. 

∑ >=>=>
i

jijijj ySaGMPMEventPGMPMEventMySaGMPMMySaM ),|(),|(,||
__

 
(20)

  

Since only one distance is associated with each event, the disaggregated mean distance 

can be found easily by determining the sum of the products of the distance given an event and 

the disaggregated contribution of the event, as follows: 

∑ >=>
i

ii ySaEventPEventRySaR )|()|(|
_

 (21)

The disaggregated mean distance values are plotted in Figure 9.  In this case the results 

are very similar to the magnitude disaggregation results due to the one-to-one correspondence 

between magnitudes and distances in this simple example. 

For each event (M = m, R = r), epsilon values change as Sa varies.  The centroidal values 

of epsilon given Sa > y and an event, iEventySa ,|
_

>ε
 
can be obtained from Equation (5). The 

disaggregated mean epsilon can be computed as follows:
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 The disaggregated mean epsilon values are plotted in Figure 10.  As Sa increases, the 

mean ε value increases, and this can have a large impact on the shape of the CMS that will be 

computed in the next section.  

4.5 Conditional Mean Spectrum Computation Using Two Approaches 

With the disaggregation information of the previous few sections, it is now possible to 

compute the CMS using Equation (11).  The first-mode period of interest in this example is 1s 

and our first example calculation is conditioned on Sa exceeding 0.84g, we use the disaggregated 

mean values of M, R, and ε given Sa(1s) > 0.84g.  The mean predictions of lnSa at other periods, 

using each GMPM, are then computed using Equation (11). 

There are two approaches to CMS computation using multiple GMPMs. 

For Approach 1, we first compute the mean M, R, and ε given Sa > y using all GMPMs, 

from Equations (19), (21), and (22).   

Then we compute CMSj, the CMS computed using GMPMj and the mean M, R, and 

ε given all GMPMs, from Equations (19), (21), and (22) as follows: 

)|,|,|(
___

ySaySaRySaMCMSCMS jj >>>= ε  (23)

The result from equation (23) on its own is also the “Approach 0” mentioned above, as it 

can be used on its own as a simple way to obtain a CMS.  

To use the results of equation (23) in Approach 1, we compute a weighted sum of these 

CMSj, using the assigned weight of GMPM (0.25 in this case), as follows: 

∑∑ ==
j

j
j

jj CMSGMPMPCMSCMS )25.0()(  
(24)

The results from equations (23) and (24) are shown in Figure 11. The result from 

equation 24 is denoted “CMS, Composite” as it is a composite of the individual CMS spectra 

from equation (23). 

Similarly for Approach 2, first we compute the mean given Sa > y using each GMPM.  

Note that the disaggregation means used here here are conditional on each GMPM (e.g., using , 

Equation (20)), instead of on all GMPMs, as in Approach 1. 
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Then we compute CMSj’, the CMS computed using GMPMj and the respective mean M, 

R, and ε given each GMPM, from procedures similar to Equation (20). 

)|,|,|('
___

ySaySaRySaMCMSCMS jjjjj >>>= ε  (25)

Equation (25) is identical to Equation (23), except that the GMPM-specific M/R/ε values of 

Equation (25) are used in place of the overall M/R/ε disaggregation values. 

Finally for Approach 2, we compute a weighted sum of these CMSj’ (composite curve in 

Figure 12), using the disaggregated contribution of GMPMs.  Note that probability of GMPM 

here is conditional on Sa > y, and it differs from the assigned equal probability.  This 

disaggregated probability of GMPM adds insights regarding the relative contribution of GMPM 

to the prediction of the Sa level of interest.  The extension of PSHA disaggregation to GMPMs 

offers a more complete solution compared to the original approach. 

∑ >=
j

jj ySaGMPMPCMSCMS )|(''  
(26)

Figure 13 shows that the approaches of Equations (24) and (26) are not equivalent.   

Approach 0 is a raw attempt to compute the CMS using a single GMPM with available data.   

Approach 1 is a simplified method to obtain a composite CMS by averaging the conditional 

mean spectra obtained from each of the GMPMs.  Approach 2 computes a weighted average of 

the GMPM-specific conditional mean spectra, where the weights come from GMPM 

disaggregation, and is thus probabilistically consistent.  The drawback for Approach 2 is that we 

need additional data (i.e., the disaggregation of GMPMs and the disaggregation of magnitude, 

distance, and epsilon for each GMPM) which are not readily available from current PSHA 

calculation tools or the USGS website.   There is a large scatter among different single-GMPM 

CMSs in Approach 0, showing the variability among different GMPMs.  However, the difference 

between Approach 1 and Approach 2 is not significant in this example, which suggests that we 

may be able to approximate Approach 2 using the simpler Approach 1.  Further calculations in 

more varied and more realistic conditions are needed to confirm this possibility. 

 

To investigate the effect of change in design level and period of interest on the accuracy 

of these approaches, four combinations with three design levels and two periods of interest are 

shown: a) Sa(1s) > 0.84g, corresponding to 2% in 50 years Sa exceedance (Figure 13); b) Sa(1s) 

> 0.43g, corresponding to 10% in 50 years Sa exceedance (Figure 14); c) Sa(1s) > 0.10g, 
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corresponding to 40% in 50 years Sa exceedance (Figure 15); d) Sa(0.2s) > 0.84g, corresponding 

to 10% in 50 years Sa exceedance but at a different period of interest (Figure 16).  

An examination of Equation (11) reveals the components of CMS computation at various 

design levels, i.e. target Sa(T1)*. As the target Sa(T1)* value changes, the disaggregated mean 

M/R/ε change, which change Sa prediction in terms of μlnSa and σlnSa.  The correlation coefficient 

ρ, on the other hand, is not dependent on the target Sa(T1)* value.  As ε increases, ερ increases, 

resulting in a larger difference between Sa at the period of interest (usually the first-mode period) 

and Sa at periods further away from the period of interest and hence a sharper spectral shape.  

This is apparent in Figure 17: the three CMSs using the same approach differ as a result of the 

variation in the mean disaggregated epsilon values as shown in Figure 10.  For instance, a 

decrease in target Sa from 0.84g to 0.43g results in a decrease in ε  from 1.90 to 1.22 (as well as 

a decrease of M from 7.48 to 7.12 and a decrease of R from 21.1 to 18.4), which results in a 

flatter CMS given Sa(1s) > 0.43g. 

To evaluate the appropriateness of approximating Approach 2 using Approach 1 at a 

single Sa(T1)*, we can look at both the disaggregated mean M/R/ε and disaggregated GMPM 

contribution.  If the disaggregated mean M/R/ε is similar for different GMPMs (e.g., 

ySaMySaM j >≈> ||
__

) at Sa(T1)*, μlnSa and σlnSa will be similar, i.e. CMSj’ (Equation (25)) is 

similar to CMSj (Equation (23)).  Approach 1 (Equation (24)) and Approach 2 (Equation (26)) 

are weighted averages of CMSj / CMSj’ respectively and thus will give similar results of 

CMS/CMS’. In other words, the relative contribution of GMPMs in Equation (26) does not 

matter much since CMSj’ is almost equal to CMSj.   

On the other hand, if the disaggregated mean M/R/ε vary a great deal for various 

GMPMs, the GMPM specific CMSj’ will be substantially different from the general CMSj.  The 

relative contribution of GMPMs then accounts for the difference in CMS and CMS’.  However, if 

the relative contribution of GMPMs is about equal, then the average CMS’ is similar to CMS, 

despite the difference between CMSj’ and CMSj.   The difference between CMS’and CMS for 

Sa(1s) > 0.10g (Figure 15) is much smaller than that for Sa(1s) > 0.84g (Figure 13), because the 

disaggregated mean M/R/ε differ less among different GMPMs for Sa(1s) > 0.10g (from Figure 7 

to Figure 9), resulting in a smaller difference between CMSj’ and CMSj, and a less important 

relative contribution of GMPMs which is also closer to the equal value (0.25 in this example). 
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CMSj employs the same overall disaggregated mean M/R/ε (e.g., ySaM >|
_

) whereas 

CMSj’utilizes GMPM-specific disaggregated mean M/R/ε (e.g.,
 

ySaM j >|
_

).  Since the same 

M/R/ε are used for CMSj, the scatter in CMSj in Approach 0 (Figure 11) reflects the variability in 

Sa prediction by different GMPMs.  However, CMSj’ (Figure 12) shows a larger scatter than 

CMSj (Figure 11), with variability from both Sa prediction and disaggregation of M/R/ε.  If the 

disaggregation of M/R/ε differ very little among different GMPMs, there will be a smaller 

difference between CMSj’ and CMSj. 

When the design level or period of interest changes, the event that causes Sa(T1) > 

Sa(T1)* (shown by disaggregated mean M/R/ε ) varies.  With the same period of interest, when 

the design level changes, the spectral shape changes, as shown in Figure 17.  With the same 

design level, when the period of interest changes, the spectral shape changes, as shown in Figure 

18.   The former can be used to select ground motions for the same structure at various design 

levels, potentially used in incremental dynamic analysis.  The latter can be used to select ground 

motions for different structures at the same design level, or alternatively, select ground motions 

for the same structure with various periods of interest (e.g. first-mode period and higher mode 

period for a tall building) at the same design level, potentially using multiple CMSs (Baker 

2005). 

5 Discussion and Conclusions 

The application of conditional mean spectrum (CMS) computation to multiple ground 

motion prediction models (GMPMs) requires the disaggregation of GMPMs.  This approach is 

consistent with the probabilistic treatment of random variables in traditional probabilistic seismic 

hazard analysis (PSHA), and is an extension from the currently available method of 

disaggregation of events.  The CMS method applied directly to the disaggregated mean M, R, 

and ε considering all GMPMs, may produce different results from that applied to the 

disaggregated mean M, R, and ε considering each GMPM separately, along with its associated 

disaggregated contribution. The spectral shape of CMS, as well as the causal event, varies as the 

design level or the period of interest changes.  CMS using multiple GMPMs has practical 

significance since multiple GMPMs are usually used to obtain an aggregate hazard rate.  It will 

be probabilistically consistent to consider the conditional relative contribution of GMPMs.  The 
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disaggregation of GMPMs provides additional insights into which GMPM contributes most to 

prediction of Sa values of engineering interest.   

Currently, GMPM disaggregation is typically not available (e.g., from USGS hazard 

maps).  CMS applied directly to the disaggregated mean M, R, and ε considering all GMPMs 

without the disaggregation of GMPMs and the disaggregation of M, R, and ε with respect to each 

GMPM, may produce inaccurate results, especially for cases where disaggregation of M, R, and ε 

differ significantly using different GMPMs.  Although the computation of CMS using multiple 

GMPM is slightly more complicated, the improved accuracy may be worthwhile in some cases.   

Performing GMPM disaggregation in typical PSHA calculations would be very beneficial 

in facilitating the improved CMS calculations presented in this paper.  We can further extend 

disaggregation to other ground motion parameters, such as earthquake fault types, to more 

accurately represent the parameters that contribute most to Sa values of engineering interest. 

Future collaborations with USGS are essential to overcome challenges in practical 

implementation of CMS using multiple GMPMs. Such implementation can be incorporated into 

future USGS hazard maps and made available to the public, which would then facilitate the CMS 

calculation procedure above and aid ground motion selection efforts. 
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Figure 1: Probability density function of epsilons demonstrating the difference between McGuire 
disaggregation (ε∗) and Bazzurro and Cornell disaggregation ( ε ).  
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Abrahamson and Silva   p = 0.25 
Event A Boore et al. p = 0.25 

 νA Campbell p = 0.25 
  Sadigh et al. p = 0.25 

    
  Abrahamson and Silva   p = 0.25 
Event B Boore et al. p = 0.25 

νB Campbell p = 0.25 
Sadigh et al. p = 0.25 

Figure 3: Logic tree of GMPMs used to calculate hazard in the example site. 
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Figure 4: Prediction of ground motion exceedance for two events using four different GMPMs in the example 

site. 
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Figure 5: Probabilistic Seismic Hazard Analysis curve for the example site. Three Sa levels of later interest 

are also noted.   
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Figure 6: Disaggregation of events, given Sa(1s) > y, for the example site.  Disaggregation results 

corresponding to Sa exceedance probabilities of 40%, 10%, and 2% in 50 years are marked on the figure. 
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Figure 7: Disaggregation of GMPMs, given Sa(1s) > y, for the example site. 
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Figure 8: Disaggregation of magnitude M, given Sa(1s) > y, for the example site. 
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Figure 9: Disaggregation of distance R, given Sa(1s) > y, for the example site. 
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Figure 10: Disaggregation of epsilon ε, for the example site. 
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Figure 11: CMS computation using Approach 1 conditional on Sa(T1 = 1s) > 0.84g (2% in 50 years),  for the 

example site. 
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Figure 12: CMS computation using Approach 2 conditional on Sa(T1 = 1s) > 0.84g (2% in 50 years),  for the 

example site. 
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Figure 13: Comparison of CMS computation using Approaches 0, 1, and 2 conditional on Sa(T1 = 1s) > 0.84g 

(2% in 50 years), for the example site. 
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Figure 14: Comparison of CMS computation using Approaches 0, 1, and 2 conditional on Sa(T1 = 1s) > 0.43g 
(10% in 50 years), for the example site. 
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Figure 15: Comparison of CMS computation using Approaches 0, 1, and 2 conditional on Sa(T1 = 1s) > 0.10g 
(40% in 50 years), for the example site. 
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Figure 16: Comparison of CMS computation using Approaches 0, 1, and 2 conditional on Sa(T1 = 0.2s) > 

0.84g (10% in 50 years). 
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Figure 17: CMS conditional on Sa(1s)  > Sa(T1)*  for 2% in 50 years (Sa(T1)*  = 0.84g), 10% in 50 years 
(Sa(T1)*  = 0.43g), and 40% in 50 years (Sa(T1)*  = 0.10g) design levels. 
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Figure 18: CMS conditional on Sa(T1)  > Sa(T1)*  for 10% in 50 years design level (Sa(1s)*  = 0.43g and 
Sa(0.2s)*  = 0.84g). 
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